Tables Collection

Topological Properties of common Metric Spaces

Topological Properties of common Metric Spaces
Metric SpaceNormDistanceSeparabilityCompleteness (Banach space for normed space)
\(n\)-dimension Eucilidean space \((\mathbb{R}^n,d)\)$$\Vert x\Vert = \sqrt{\sum_{i=1}^{n} x_i^2}$$$$ d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i-y_i)^2} $$
Discrete metric space \((X,d_0)\)\(X\) is countable/$$d_0(x,y)=\begin{cases}0, x=y\\1, x\not=y\end{cases}$$
\(X\) is uncountable
Space of continuous functions \(\mathscr{C}[a,b]\)$$\Vert f\Vert = \max\limits_{x\in [a,b]} \vert f(x)\vert$$$$d(f,g) = \max\limits_{x\in [a,b]} \vert f(x)-g(x)\vert$$
$$\Vert f\Vert = \int_a^b \vert f(t)\vert \,\mathrm{d}x$$$$d(f,g) = \int_a^b \vert f(t)-g(t)\vert \,\mathrm{d}x$$
Space of bounded sequences \(\ell^\infty\)$$\Vert x\Vert = \sup\limits_{i\geq 1} \vert x_i\vert$$$$d(x,y) = \sup\limits_{i\geq 1} \vert x_i-y_i\vert$$
Variable exponent sequence space \(\ell^p\)$$\Vert x\Vert = \left(\sum_{i=1}^{\infty} \vert x_i\vert^p\right)^\frac{1}{p}$$$$d(x,y) = \left(\sum_{i=1}^{\infty} \vert x_i-y_i\vert^p\right)^\frac{1}{p}$$
\(p\)-norm Lebesgue space \(L^p\)$$\Vert f\Vert = \left(\int_{[a,b]} \vert f(x)\vert^p \,\mathrm{d}x\right)^\frac{1}{p}$$$$d(f,g) = \left(\int_{[a,b]} \vert f(x)-g(x)\vert^p \,\mathrm{d}x\right)^\frac{1}{p}$$