Topological Properties of common Metric Spaces |
---|
Metric Space | Norm | Distance | Separability | Completeness (Banach space for normed space) |
---|
\(n\)-dimension Eucilidean space \((\mathbb{R}^n,d)\) | $$\Vert x\Vert = \sqrt{\sum_{i=1}^{n} x_i^2}$$ | $$
d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i-y_i)^2}
$$ | ✓ | ✓ |
Discrete metric space \((X,d_0)\) | \(X\) is countable | / | $$d_0(x,y)=\begin{cases}0, x=y\\1, x\not=y\end{cases}$$ | ✓ | ✓ |
\(X\) is uncountable | ✗ | ✓ |
Space of continuous functions \(\mathscr{C}[a,b]\) | $$\Vert f\Vert = \max\limits_{x\in [a,b]} \vert f(x)\vert$$ | $$d(f,g) = \max\limits_{x\in [a,b]} \vert f(x)-g(x)\vert$$ | ✓ | ✓ |
$$\Vert f\Vert = \int_a^b \vert f(t)\vert \,\mathrm{d}x$$ | $$d(f,g) = \int_a^b \vert f(t)-g(t)\vert \,\mathrm{d}x$$ | ✓ | ✗ |
Space of bounded sequences \(\ell^\infty\) | $$\Vert x\Vert = \sup\limits_{i\geq 1} \vert x_i\vert$$ | $$d(x,y) = \sup\limits_{i\geq 1} \vert x_i-y_i\vert$$ | ✗ | ✓ |
Variable exponent sequence space \(\ell^p\) | $$\Vert x\Vert = \left(\sum_{i=1}^{\infty} \vert x_i\vert^p\right)^\frac{1}{p}$$ | $$d(x,y) = \left(\sum_{i=1}^{\infty} \vert x_i-y_i\vert^p\right)^\frac{1}{p}$$ | ✓ | ✓ |
\(p\)-norm Lebesgue space \(L^p\) | $$\Vert f\Vert = \left(\int_{[a,b]} \vert f(x)\vert^p \,\mathrm{d}x\right)^\frac{1}{p}$$ | $$d(f,g) = \left(\int_{[a,b]} \vert f(x)-g(x)\vert^p \,\mathrm{d}x\right)^\frac{1}{p}$$ | ✓ | ✓ |